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Introduction

Near-fault directivity is an important
effect to quantify for performance-basec
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Pulse identification and extraction

Here we will objectively identify pulses
by decomposing ground motions into
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Pulse identification and extraction
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Here we will objectively identify pulses
by decomposing ground motions into
wavelets

If the largest wavelet coefficient is
associated with a large portion of the
record, a ground motion is identified
as containing a pulse
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Observations from past earthquakes
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The algorithm identifies ground motions with clear pulses, and the identified
motions are generally at locations where directivity is expected



Incorporation into seismic hazard analysis

We have known of directivity effects for many years

But linking these effects into hazard analysis and ground motion selection
remains a challenge

Directivity pulse predictions are not certain
— Pulse periods are not certain

— We need ground motion intensity predictions for pulse-like ground motions



Background: standard PSHA calculations

Standard PSHA calculation for a single seismic source:

Annual rate of Sa > x

Annual rate of earthquakes on the source

v (x) = vequP(Sa>x|mr)f(m r)a’mdr

|

VAR TN

Integrate Probability of Sa >x, given an Probability density function
over all m,r earthquake with m and r for magnitude (m) and
(from ground motion distance (r), given an

prediction model) earthquake



Modified PSHA calculations

Standard PSHA calculation for a single seismic source:

v (x) =vequP(Sa > x|m,r) f(m,r)dmdr

Modified PSHA calculation, including directivity effects (adapted from Tothong et al., 2007)

Vg (X) = Vegfff (Sa>x| m,r,zl)f(m,r,z)ldmdrdz

X .

Updated ground motion Distribution of magnitude
prediction model, (m) and distance (r) and
accounting for z source-to-site geometry

(z), given an earthquake



Building the new ground motion prediction model

Expand the ground motion model to distinguish between pulses and non-pulses:

P (Sa> x|m,r,z) = P(Pulse| z) P, , (Sa> x| m, 1, z) + (l — P( Pulse| Z))P(Sa> x| m7)
) \
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Pulses ! Non-pulses !
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Standard ground

Standard ground motion prediction
motion prediction model
model,
plus a pulse

amplification function

Note that we could re-fit the ground motion prediction models as well, but this
appears to be a reasonable model and takes much less effort



Pulse amplification model

Our initial hypothesis:

The response spectrum for a pulse-
like ground motion is an “ordinary”

spectrum plus a “pulse amplification”

around the period of the pulse
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Model development: pulse amplification

A simple predictive model can be built for this for this “narrow-band” pulse

amplification:
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Pulse period versus earthquake magnitude

There is a strong relationship between earthquake magnitude and pulse period.

These results are in good agreement with previous studies (e.g., Bray and
Rodriguez-Marek 2004; Mavroeidis and Papageorgiou 2003; Somerville 2003)
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Amplification, with and without pulse period uncertainty
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Results: probability of pulse occurrence
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Results: Prediction prediction for an example site
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Hazard parameters:
* Single fault
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*« M. =5
¢ Mmax = 7
* G-R “b-value” = 0.9
* V30 =250m/s

Site located 6.7 km from fault

This is approximately the conditions
at the Imperial Valley fault, where a
pulse was observed



Uniform Hazard Spectrum (2%/50yrs) for the example site
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Map of Sa(2s) directivity amplification
(2%/50 yrs probability of exceedance)
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Map of Sa(2s) directivity amplification
(2%/50 yrs probability of exceedance)
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Results: Deaggregation

P(Pulse|Sa>x)
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* These results can be used for record selection (as we do today with magnitude and

distance deaggregation)

* This is one benefit of predicting pulse and non-pulse spectra separately
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Conclusions

We have built statistical models to incorporate near-fault pulse-like motions
into PSHA

— Probability-of-pulse prediction
— Pulse period predictions

— A narrow-band ground motion prediction model for pulse-like motions

The results can be used to perform site-specific PSHA, and general studies
can be used to investigate “near-fault amplification”

Deaggregation calculations tell us the probability of a pulse given Sa(T)>x and
the distribution of causal pulse periods, facilitating record selection

Future work will refine the classification scheme, and look at predictions
beyond elastic response spectra

http://www.stanford.edu/~bakerjw/pulse-classification.html
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Multi-component classification
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Pulse periods

Unlike the sine waves from the
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Fourier Transform, wavelets have no
intrinsic period

Wavelet

Sine wave corresponding to psuedo-period of wavelet

We define the wavelet’s pseudo-period
as the period associated with its
maximum Fourier amplitude

Amplitude

This measure can thus quantify the N |
period of a detected pulse
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